Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350720

RESUMEN

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Asunto(s)
Canales de Potasio , Prurito , Animales , Ratones , Antipruriginosos/uso terapéutico , Histamina/metabolismo , Loxapina/uso terapéutico , Canales de Potasio/metabolismo , Prurito/tratamiento farmacológico , Prurito/metabolismo
2.
Cells ; 11(10)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626730

RESUMEN

The transient receptor potential (TRP) ankyrin type 1 (TRPA1) channel is highly expressed in a subset of sensory neurons where it acts as an essential detector of painful stimuli. However, the mechanisms that control the activity of sensory neurons upon TRPA1 activation remain poorly understood. Here, using in situ hybridization and immunostaining, we found TRPA1 to be extensively co-localized with the potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) in sensory neurons. Mice lacking Slack globally (Slack-/-) or conditionally in sensory neurons (SNS-Slack-/-) demonstrated increased pain behavior after intraplantar injection of the TRPA1 activator allyl isothiocyanate. By contrast, pain behavior induced by the TRP vanilloid 1 (TRPV1) activator capsaicin was normal in Slack-deficient mice. Patch-clamp recordings in sensory neurons and in a HEK cell line transfected with TRPA1 and Slack revealed that Slack-dependent potassium currents (IKS) are modulated in a TRPA1-dependent manner. Taken together, our findings highlight Slack as a modulator of TRPA1-mediated, but not TRPV1-mediated, activation of sensory neurons.


Asunto(s)
Nocicepción , Canales de Potencial de Receptor Transitorio , Animales , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Dolor/metabolismo , Canales de Potasio/metabolismo , Canales de potasio activados por Sodio , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
3.
Purinergic Signal ; 17(3): 503-514, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34313915

RESUMEN

Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03-1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.


Asunto(s)
Agonistas del Receptor de Adenosina A1/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Receptor de Adenosina A1/biosíntesis , Agonistas del Receptor de Adenosina A1/farmacología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Receptor de Adenosina A1/genética , Resultado del Tratamiento
4.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401689

RESUMEN

The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Calcio/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/metabolismo , Canales de potasio activados por Sodio/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriales/fisiología , Adenosina Trifosfato/farmacología , Animales , Escala de Evaluación de la Conducta , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Nervios Periféricos/patología , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Canales de potasio activados por Sodio/genética , Receptores Purinérgicos P2X3/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...